ALELE AND HAPLOTYPE FREQUENCIES OF (6)Y-STR LOCI IN TURKEY

* FARUK AŞICI06LU, FATİH AKYOZ, UMIT CETINKAYA, MEHMET ALİ CANLI
Department of Biology, The Council of Forensic Medicine, Ministry of Justice, Adli Tip Kurumu Baskanligi, Esekapı-Cerrahpasa, Istanbul, Turkey.

Introduction
DNA polymorphism of the human Y-chromosome is becoming frequently used in forensic application. Although Y-STR data concerning mutational rates have been limited so far, recent studies indicate similar average mutational rates for autosomal STR loci commonly used in forensic sciences. Y-chromosomal STRs are characterized by male inheritance pattern and remain stable in a given paternal lineage over many generations. Thus, this system is very useful in forensic casework such as rape cases where a mixture of male and female DNA is found, and paternity deficiency cases when the putative father is not available. It is also used in kinship analysis and human identification.

In this study, we analyzed the frequency distributions of six Y-chromosomal specific STR polymorphisms and frequencies of haplotypes in Turkish population.

Material and Methods
Sample Preparation
Blood samples were taken from 200 unrelated Turkish males, from different regions of Turkey. DNA extraction was performed by salting out procedure or chelex extraction.

PCR Amplification
DNA was amplified and typed using of the Y-Plex 6 kit, which contains 6 Y-STR markers (DYS389, DYS19, DYS389 II, DYS 390, DYS 391, DYS 385). Reliagen Technologies, Inc., New Orleans, LA, USA) according to the manufacturer’s protocol. Amplification was carried out in a MJ Research PTC-200 Thermal Cycler (MJ Research, Inc., Watertown, Massachusetts, USA).

Electrophoresis
Capillary electrophoresis was carried out on an ABI 310 genetic analyzer (Applied Biosystems, Foster City,USA). Allele designations were determined according to the fragment size in base pairs, using the allele designation guide provided by Reliagen Technologies, Inc., New Orleans, USA.

Results
Total 200 unrelated Turkish individuals were analyzed. Allele frequencies and gene diversity values are shown in Tables 1 and 2. Haplotype frequencies observed in our study, Y-chromosomal short tandem repeat haplotype reference database (YHRD) and Henke’s results for German Turks are listed in Table 3. We observed total 184 haplotypes. Fourteen haplotypes occurred more than once, 12 of them were shared by two individuals and 2 by three, whereas the remaining 170 combinations were observed only once.

The most common haplotype, “13/16/31/24/11/14-15” and “14/15/29/22/10/13-14”, repeated three times, had a frequency of 1.5%. when we excluded the DYS385 locus, we found only 122 haplotypes. Out of these, 34 occurred more than once, and 88 only once.
A total of 107 haplotypes were unique in our population (53 %) when they were compared with YHRD database (Table 3). Haplotype, “13/14/29/23/11/11-14”, observed once in our data was found 162 times in the YHRD database.

Discussion
Except DYS393 locus, the gene diversity values were similar to data in the previous publications studied with Swiss, German and Chinese. Decreasing number of haplotype combinations from 184 to 122, when we exclude the DYS385 locus, confirms that this locus has been accepted as one of the most informative Y-STR loci having been published so far.

The genotype “11-14” at the locus DYS385 was the most frequent haplotype combination (0.125) observed in our population. This was also identified as the most common genotype at a collaborative study including the data of Portugal, Spain, Italy, Greece, Germany, Netherlands, England, Norway and it varied from 0.099 in the Greek to 0.409 in the Dutch.

Only 19 haplotypes were same for both the Turks in the homeland and in Germany. It can be therefore expected that larger number of haplotypes will be revealed in studies based on larger sample sizes. For Y-chromosome specific markers, the haplotype diversity for the whole array of loci is more important than the allele distribution for each marker. Because the haplotype diversity value of the Y-chromosome corresponds to the value of the power of discrimination and the chance of exclusion for unrelated males.

Henke et al. showed a very high degree of haplotype diversity with 2.5 % highest frequency in German Turks, whereas at the same study the most frequent haplotypes were found 12% in Jat Sikhs and 4.8% in Germans. We also found the two most frequent haplotypes occurred three times with the frequency 1.5%.
This result strongly confirm Henke's observation above. This very high degree of haplotype diversity in Turkish population makes Y-STRs more useful tools in Forensics.

We have begun to use this system routinely for deficiency paternity testing cases (e.g. where the father is not available for analysis or supporting the autosomal STR data), incest cases, all rapes, homosexual assaults, human identification, homicide investigations, and the Y-STR system has also been planned for mass disasters.